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ANALYSIS OF STRAIGET MULTICELL WINGS ON

CAL-TECH AI’wLoGCOMPUTER

By Stanley U. 13enscoterand Richard H. MacNeal

Using the Cal-Tech analog computer, structural analyses have been
made for four straight multicell wings. Wings with aspect ratios of 2
and 4 with rectangdar and biconvex cross sections have been considered.
The wings are supported rigidly along two lines at the faces of the fuse-
lage. Concentrated loads are applied at the intersection points of the
ribs and spsrs. The effects of shearing strains in the ribs and spars
are included. Deflections and all internal force quantities have been
recorded as well as vibration modes and frequencies.

INTRODUCTION

The structural.analysis of a thin multicell wing of low aspect ratio
presents a rather difficult problem if one wishes to obtain better accu-
racy than csm be obtained from elementary beam theory. Four such wings
have been analyzed on the Cal-Tech analog computer for various static
loads and in vibrational motion. Wings with rectangular and biconvex
cross sections with aspect ratios of 2 and 4 have been analyzed. The
wings are assumed to extend through the fuselage and to be supported
rigidly along two lines at the faces of the fuselage.

When cross sections of a thin wing have a horizontal axis of sym-
metry, the wing deforms under load in the manner of a plate. Analogous
circuits for elastic plates were given in reference 1. The Structlm%ll
theory and analogous circuits for multicell wings are given in refer-
ence 2. The present paper is devoted to a presentation of the results
of coqutations based upon the method of reference 2. co~arisons with
elementary beam theory are given wherever possible. In the case of
bending loads the variation from beam theory becomes appreciable only at
very low aspect ratios. In the case of torsional loads the variation
from beam theory is more pronounced because of the occurrence of normal
stresses due to wsrping restraint. The graphical illustrations represent
only a small portion of the data which were obtained from the computer.
The complete results of the computing work have been omitted for publica-
tionbut are given in the tables in the manuscript COPY of tms report. .
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area of a cell
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SYMBOIS

used in

area of shear web of ith

area of shear web of jth

chord of wing

shear-flow calculations

rib in nth bay

spar in mth bay

transformation or c--over factor

bending stiffness of ith rib at jth spar

bending stiffness of jthspar at ithrib

twisting stiffness of a panel

Young’s modulus

frequency

shearing mahlus of elastici~

depth of jth spar

moment of inertia of skin per unit of width

moment of inertia of jth spar

total moment of inertia of cross section

torsion constant

distance from sup~rt line to wing tip
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bending moment

bending moment in ith

bending moment in jth

concentrated load

rib at jth spar

spar at ith rib

load at ith rib and jth spar

shear flow

shear flow in web of jth spsr

statical& determinate part of q
3

indeterminate part of qj

cellular shear flow h nth cell

flexibility of spar

flexibility of rib

interaction flexibility,

interaction fl~bili~,

twist* moment

twisting moment computed

transformer numbers

from beam theory

shesx

shear in ith

sheer in jth

shear in jth

rib at nth bay

13par

spsr at mth bay
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statically

deflection

deflection

deflection

deflection

deflection

determinate part

frombeamtheory

of vJ

at ith rib and jth spar

due to shearing strati only

of a beam from difference equations

ratio of length to width of a wall se~ent

ratio of depth to width of web of jth spar

rotation of normal in ith

rotation of normal in jth

j~ in a function across

jump in a function across

rib h nth bay

apsr in mthbay

ith rib

jth spar

width of structure associated with ith rib

width of structure associated with jth spar

width of mth bay between ribs

width of nthbay between spars

Poisson’s ratio

equivalent chordwise Poisson’s ratio defined by
equation (1)

equivalent spanwise Poisson’s ratio defined by
equation (1)

normal stress

spanwise no-l stress

normal stress computed from beam theory
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smmnation about

shearing stress

shearing stress

nth cell

computed from beam theory

DIHXtPTION OF STRUCTURES

In order to arrive at a reasonable set of dimensions for the struc-
tures to be analyzed a few design computationswere made by using ele-
mentary beam theory. The complete missile was assumed to weigh 20 kips
and to be designed for an ultimate load factor of 4. The allowable nor-
mal stress in the skin was assumed to be 20 ksi and the allowable shearing
stress in the spar webs was assumed to be 12 ksi. The loading was assumed
to be uniformly distributed. The thickness of the rib webs was arbitrarily
assumed to be one-half of the value determined for the spar webs. The
resulting structure for an aspect ratio of 2 with a rectangukr cross sec-
tion is shown in figure 1.

In order that the skin might carry a normal stress of 20 ksi with-
out buckling it would be necessary to reduce the spacing of the spars to
approximately one-half of that shown in figure 1. This would provide
13 spars rather than 7 spars. The limitation to seven spars was dic-
tated by the amount of electrical equipment which was available. Each
spar which is shown in figure 1 should be considered as being equivalent
to two spars in the structure as it would be built. Comection angles
and shear web flanges have been omitted for convenience.

Details of the wing with a rectanguhr cross section and am aspect
ratio of k are shown in figure 2. The structural chord of 72 inches has
been retained for all of the wings. Also the fuselage bay has been
assumed to be one-third of the total structural span for all wings. The
allowable shearing stress in the spar webs was reduced to one-half of the
previous v~ue or 6 ksi. In order to develop this strength in the deeper
web some form of stiffening against shear buckling would be required.

The dimensions of the wings with biconvex sections have been chosen
more or less arbitrarily to give about the same strength as that provided
by the rectanguhr cross sections. The dimensions of the wing of aspect
ratio 2 sre shown in figure 3. For the wing having an aspect ratio of 4
and a biconvex section the dhensions are shown in figure 4.

In order to record the computed results in tabulsr form a numbering
system for points on the plan form has been adopted as shown in figure 5.
A nuniberhas been assigned to each point at which some qpantity is measured.
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lk presenthg the results of the analyses it is only necessary to give
the results for one qyadrsmt of the plan form since the layout of the
structure has double symmetry in its plan. The points at which concen-
trated loads are applied are shown in figure 6. w deflections and
bending moments are also measured at these points. The points at which
shears are determined sre shown in figure 7. = figure 8 thepotits
are shown at which twist~ moments axe determined. These twisting
moments may %e considered as aversge values over the paneh.

A few ssmple calctit ions of structural constants are included to
show in detail how these quantities are determined. The calculation of
stiffness constants is made according to the formuhs contained in ref-
erence 2. The wing is assumed to be constmcted of an aluminwn allby
having the material properties shown in table 1. Calculations for the
spanwise and chordwise bending stiffnesses at an interior point of the
wing with rectaqgdsr cross section and aspect ratio 2 are given below.

For the spsx:

t-’”+
ZEIET

t
.16’t

(3.84)2 ~ 10.4 x 106 + 1
‘Ji = 12xo.16x — ~ x o.I-4x (3.68)3 x 10.4 x 106

2 0.91

= (161.8+ 6.0)x 106

= 167.8x 106 lb-ti.2

()161.8Wji= ~ x 0.3 = 0.289
●

——— ._ —-. ..- --
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For the rib:

.

,’

(3.84)2 ~ 10.4 x 106 1
Dij = 16x 0.16x +— x 0.07x (3.68)3 x 10.4 x 106

2 0.91 12

=(216+3) Xlo6

= 219 x 106 lb-in.2

()216~ij = ~ x 0.3 = 0.296

It is convenient in the computationof structural constants to intro-
duce spanwise and chordwise Poisson ratios according to the following
definition:

(1)

The relation between
the following form:

bending moments and curvatures may be expressed in

‘iPjm Aj$ti
D.Ji

—+ pjiI)ji— =
?y Aj

‘“ji

%.pjm+ Dij ‘Spti . -~j
PijDij — —

?q Aj

(2a)

(m)

—— —— —....—— —.—.— — ..
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h order to design the analogous circuits, equations (2) must be
.. inverted to obtati formuhs for the curvatures in terms of the bending

moments. The coefficients of such equtions may be referred to as
flexibilities. Formulas for the flefibilities‘

A sample calculation
an interior point of

.Ai
RX =

D3i(l- ~ij~ji)

Ajkqj

%=
Djip - ~ij~ji )

become:

of the numerical values for the flexibilities at
a rectangular section with aspect ratio 2 are:

1- Pijwji = 1 - (0.289)(0.296)=0.914

%= “ 16 = O.1O43X (10)-6
167.8x 106X 0.914

%= E =
219x lO6X 0.914

0.0600X (10)-6

——— .
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%=

w x 0.296
= 0.0231X (10)-6

167.8x 106X 0.914

16x 0.289
%=

= o.0231x (10)-6

219 x I_06x 0.914

A sample calculation of the shearing constant of an interior spar

1 1
=0.0303X (10)-6

?y#A3m = MXI+ X106X 0.14x 3.68

A calculation of the shearing constant of an interior rib is:

1 1= =o.080gx (10)-6
X@.A~ 12X4X 106X 0.07X3.68

A sample calctition of the twisting constant

is:

for the skin is as follows:

GI =4X106X0.16X
(3.8+)2

= 4.72 X 106
2

h L)%1 I-2
—=— —=
?mn GI

=0.1589X (10)-6
16x 4.72x 106

— .—-..—. — —.-. — .-—_ ___ . ——



10 NACA TN 3113

LOADING CONDITIONS

Since the plan form of each wing has two =es of symmetry the
loading may be divided into four types according to the symetry con-
ditions. Loads which are symmetrical about the midchord line are
referred to as bending loads and loads which are antisynmetrical about
the midchord line provide the torsional loading. Since the loads may
be symmetric or antisymetric about the plane of symetry of the air-
craft the following four types of loading may be considered: Syrmuetric
bending, symmetric torsion, antisymnetric bending, and antisynmetric
torsion.

For the static loading conditions the loads are assumed to be
applied as concentrated forces at the points of intersection of the ribs
and spars. The loads are applied as a group of four forces, one in each
quadrant of the plan form, to form a doubly symmetrical arrangement. In
designing the analogous circuit and in recording the results of the analys-
is it is only necessary to consider one quadrant of the structure. A
circuit was designed to correspond to the first quadrant of the plan form.
Each point of this quadrant was loaded independently. The four types of
loading were obtained by using the appropriate boun~ conditions for
the quadrant along the lines of symmetry of the plan form.

Four wings, each to be loaded with loads having four types of sym-
metry, provide 16 cases. In each case there are 16 loadings. Such a
complete program of computation would be too extensive to be justifiable.
Hence it was decided to load all points in 4 cases and to load only the
tip points in the remaining 12 cases. The choice of loading points for
the various cases is shown in table 2. In order to make a further saving
in the calculation work for those cases wherein all points were loaded,
the internal force quantities were not recorded when the four points in
the fuselage bay were loaded. Deflections were, however, recorded in all
cases.

KNJNDARY CONDITIONS

Along the lesding edge of the wing the chordwise shear, chordwise
bending moment, and chordwise twisting mcunentmust vanish. Along the
wingtip the spanwise shesr, sp=wise bending moment, and spanwise
twisting moment must vanish. Along the line of support the vertical
deflection must be zero. It has also been assumed that the wing is
c~ed along the support in such a manner as to prevent chordwise rota-
tion of the normals to the elastic axis of the rib which lies over the
support. This clamping, however, does not prevent the rib from warping

. —— —.
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out of its own pls.ne. This assumption
not rotate provides a relation between
moments over the support. Since $ti

1-1.

that the normals & the rib do
spanwise and chordwise bending
is zero at all points slong the

support the quantity Aj~ti may be set equal to zero in equations (2).

This gives the following formula for the chordwise bending moments in
terms of the spanwise bending moments:

(3)

The center lines of the plan form axe boundsry lines for the quad-
rant of the wing. Along these lines the boundary conditions are symmetry
conditions and are determined from the known symmetry of.the applied load.
It can be shuwn and it is obvious from physical intuition that the sym-
metry of the deflection surface is the same as the symnet~ of the applied
load. IYom the known symmetry of the deflection surface the symmetry con-
ditions of the various derivatives can be determined. l?romthis informa-
tion the symmetry conditions for the internal forces may be determined.
This determination of the symetry conditions for the internal forces
follows the srguments,which are customsry in elastic plate analysis.

ANALOGOUS ELECTRICAL fmwuITs

Since all of the four wings to be anslyzed have the same general
arrangement of ribs and spars, the same arrangement of cticuit elements
may be used for all of the wings. The complete circuit consists of three
planar circuits which ue shown in figures 9 to Il. These circuits are
sWlar to those given in reference 1 except that they include the effect
of shearing strains in the ribs and spars. The design of the circuits is
in exact agreement with the methods of reference 2.

For each type of loading, changes along the planes of symmetry &me
required to satisfy the conditions of symmetry. These changes sre indi-
cated on the drawings of the circuits. Along the leading edge and wing
tip the natural boundary conditions are automatically satisfied by the
circuit. Along the support the deflections and chordwise rotations of
normals are made to vanish by grounding the proper nodal points b fig-
ures 9 and 11.

.———— —.
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ANALYSIS m’ WINGS BY BEAM THEORY

In presenting the results of the analysis it is
interest to compare results obtained from the analog
tions obtained by applying elementsxy besm theory to
sion the expression “elementarybean theory” is used

of particular
computer with solu-
the wing. In tor-
to indicate that

stresses and displacements at a cross section are computed from the sec-
tion torque by us@ formulas from the solution of St. Venant. In
bending action “elementarybeam theory” is based on the assumption that
plane sections remain plane and in addition that cross sections are pre-
served by ribs which are rigid in their own plane. This differs from
the bending theory of St. Venant which predicts a chordwise csmber. All
comparisons in this paper will be made with elementary beam theory.

The shear flows in torsion were computed by using the numerical pro-
cedure of reference 3. An example of this procedure is given in table 3
for the biconvex section of the wing of aspect ratio 2. ‘Thesolution is
obtained by a process of successive corrections and checked by a cycle
of iteration. Because of the symmetry of the cross section about a ver-
tical axis it is only necesssry to write the computation for one-= of
the section. At each step in the calculations it must be remembered that
the shear flows in torsion are symmetrical about the center line. The
torsion constant is also conqmted in table 3. The torsion constants for
all of the wings are given in table 1.

The shear flows in bending maybe divided into a statically deter-
minate part and an indeterminatepart. This division maybe indicated
for the shear web of the jth spar as

qj = (qj)s + (qj)i (4)

It is convenient to deftie the statically determinate shear flows in the
top and bottom skin as being zero. The statically determinate shear flows
in the spar webs are computed from shears which are proportional.to the
moments of inertia of the spars

(%)shj

The statically determinate
normal stresses and are also in

as follows:

(5)

shear flows are in equilibria with the
equilibrium with the external loads. The I

_ .——— -—
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indeterminate
determined by
indeterminate

shear flows are completely self-equilibratingand are
the condition of continui~ of warping displacements. The
shear flows consist of cellular shear flows which are anti-

synmetric about the vertical axis of symmetry of the cross section. The
indeterminate shear flow in a spar web my be expressed as the difference
between the cellular shear flows in the two adjacent cells as follows:

(~j)i= -%+ %-,

In writing equation (6) it is assumed that the jth spar lies between
cell number n and cell nuniber n - 1.

The condition of continuity of warping displacements leads to a
difference equation governing the cellular shear flows as follows:

()‘j+l%-pl+ ~na ~n

Equation (7) is written for

- aj%l-l = + +1 ~j+l sL1 ( ) +%(%)s

the nth cell. The coefficients are

(6)

(7)

computed
as ratios of length to width of the wall segments. The system of equa-
tions corresponding to equation (7) has a matrix of coefficients w~-ch
is the same as for the torsion case. Consequently the numerical procedure
of reference 3 may again be employed. An example of the calculation of
shear flows in bending is given in table 4. Moments of inertia of the
cross sections and of the individual spars are given in table 1.

SOURCES

Errors in the computed results

OF ERROR

due to hadequacy of the structural
theory csmnot be estimated. However, other sources of error have been
estimated roughly as follows:

Error incomputer, percent. . . . . . . . . . . . . . . . . . ..*l. O
Error inmeter, percent . . . . . . . . . . . . . . . . . . . ..*l. O
Error inreading meter, percent . . . . . . . . . . . . . . . ..tO.5
Error in computing stiffness constants, percent . . . . . . . . . tl.O
Error from using difference equations . . . . . . (see figs. 10andll)

An inspection of the data obtained from the computer showed that the
total bending moments and shears on various cross sections violated statics

._ ——— —. ..— ~ ——.—— _.—v - . . — ———
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by smounts ranging from 1 percent to 3 percent. A factor to correct for
this error was introduced at the same time that the electrical quantities
were converted to structural quantities. The error in the computer which
is shown in the above table is an estimation of that error which remains
after the correction for statics has been introduced. The error in the
computer is due to parasitic effects in the components of the circuit.

Some error is contained in the meter which is used for measuring the
voltages or currents. Some additional human error is also involved in
reading the meter. The errors Zor the computer and the meter, as given
above, are applicable to the largest numbers which are given in the tables
of data. For the smaller quantities the percentage errors may be much
larger, even though the absolute size of the errors will be less.

In the case of the rectangular cross sections there are no errors
in the stiffness constants. However, in the case of the biconvex sec-
tions there is a small error. A more significant error arises from the
use of difference eqwtions in expressing the structural theory. No
specific value has been given for this error since there is a large dif-
ference between the symmetric and antisymmetric cases. (See figs. 12
and 13.) In order to obtain am estimte of the error in deflections a
uniform besmwas anslyzedby solving difference equations andby solving
differential equations. The central span and external spans were each
divided into three parts in fornrbg the difference equations. The besm
was assumed to be loaded with a concent~ted force at each tip.

For the case of symnetric loads the ratio of deflections from dif-
ference equations to deflections from differential eqmtions is shown
in figure 12(b). Here the error is seen to vary between 2 and 3 percent.
The antisymnetric case is illustrated in figure 13(b). In this case the
error is more than five times as great as in the symnetric case. It iS
obvious that an accurate treatment of deflections in the antisymmetric
case requires more stations along the span in forming the difference
equations or a more accurate formulation of the structural theory in
terms of difference equations. The effect of the use of difference
equations on the distribution of internal forces in the multicell wings
is not known. However, it canbe shown that all relations of statics
between the internal forces and applied loads me satisfied.

It is also of interest to estimate the error which would be made if
the deflections due to shearing strains were neglected. This requires the
use of specfiic cross sections. Such an estimate was computed for the
wings with rectangubr cross sections by using elementary beam theory.
The ratio of deflections due only to shearing strains to the total deflec-
tions, using differential eqpa.tions,was computed and plotted. For sym-
metric loading the ratio is shown in figure I-2(c)where it is seen that
the error vsries from 2 to 6 percent.. For the amtisymmetric case, which
is shown in figure 13(c), the ratio’is approximately five times aE large.

—— —
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TNWIMNT OF DATA IROM COMPUTING MACHINE

A simple check which can be made on the results from the computer
consists of conparing the total shear, bending moment, or torque on a
cross section with the value given by statics from the etiernal loads.
When this check was made errors were found which ranged from approxi-
mately 1 to 3 percent. These errors were due to parasitic effects in the
computer and not to the use of difference equations for the structural
theory. The error did not show large variations over a given planar
circuit and hence it was decided that the voltages and currents in each
planar circuit should be corrected by a single scalar factor.

The correction factors were determinedly applying statics to the
sections shown in figure 14. For %ending loads the correction factor
for both of the bending-moment circuits was determined to satisfy statics
for the bending moment over the support. The shear circuit was corrected
to satisfy statics in the first bay outboard from the support. With tor-
sional loads the bending-moment circuits were corrected to give the cor-
rect section torque in the first bay outboard from the support. The
shear cticuit was corrected to give the correct total shear on section D-D
as shown in figure 14(b). Since the shears in the spars contribute to the
section torque it is necessaxy to correct the shears first and the twisting
moments subsequently.

DEFLECTIONS DUE TO BENDING LOKCS

The results of the conqmtations on the analog computer are given in
the tables available on loan frmn NACA. From these tables a small portion
of the data has been taken to prepare illustrations of cases which seemed
to be most interesting. For all of the bending cases which are illustrated
the loading consists either of two corner loads at the tip or a single
load on the central spar at the tip.

The chordwise distribution of deflections at the tip is shown in fig-
ure 15 for the wing of aspect ratio 2 with rectangdar cross section.
Both types of bending loads are applied symmetrically. For the central
load the effect of shearing strains in the rib is clearly evident. A
comparison is made with elementary beam theory using both differential
equations and difference equations. The solution for a plate of infinite
width with a uniform line load at the tip is also shown. This solution

is obtained from the solution for abeamby multiplyingby 1 - w*. It
may be seen that the average deflection of the wing structure is somewhere
between the values predicted by the two beam theories.

.—. —. _— .————— -———
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The chordwise distributions of deflections for the wing of aspect
ratio 2 and biconvex section are shown in figure 16. ti this figure a
central load is applied at the tip sad a comparison is made between the
symmetric and antisynmetric cases. Both caaes show fairly goal agree-
ment with beam theory.

Chordwise distributions of deflections along each of the ribs are
shown in figure 17 for both wings of biconvex section. The graphs are
plotted as a ratio of computd. deflection to the deflection from beam
theory.

The spamwise distributions of deflections for the leading-edge spar
and the central spsr are shown in figure 18 for the wing of aspect ratio 2
with rectangibr cross section. A comparison is given between the sym-
metric md antisymmetric cases.

HEARS IN SPARS DUE TO BENDING LOADS

The chordwise distributions of shears in the spars at each outboard
bay sre shown in figure 19 for both wings of rectangular section. The
ratio of shear from the computer to shear obtained from beam theory is
plotted. This ratio may abo be regarded as a ratio of shearing stresses.

For the wing of aspect ratio 2 with biconvex section the shears in
the spars are illustrated in figure 20. A comparison is made of the dis-
tribution for a central load and for corner loads.

The spanwise distribtiion of shears in the leading-edge spar and
the central spar are shown in figwe 21 for awing of aspect ratio 2 with
rectangdar cross section. Vslues obtained frombeamtheory are also
shown.

SHEARSINRU3SDUETOBENDINGLQADS

A single illustration of shears in the ribs is given
for the wing of aspect ratio 2 with reckngular section.
distribution of shear in all of the ribs is shown. These
are given for symmetrical cases of a central load and for

in figure 22
The chordwise
distributions
corner loads.

BENDING MOMENTS IN SPARS DUE TO BENDING LOADS

From the spanwise bending moments one may compute the spanwise nor-
mal stresses. The ratio of spanwise normal stress from the computer to

,,

——.——-———
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the same stress from beam theory was computed for Q four wings for
symmetric bending loads. The stresses were computed for points over the
support and sre shown in figure 23 for a central tip load and in fig-
ure 24 for corner loads. It is of interest to note that the msximum
variation from beam theory for the wing of aspect ratio 4 is only 3 per-
cent while the variation for the wing of aspect ratio 2 is 15 percent.

For each of thew3ngs of aspect ratio 2 the normal stresses over
the remaining ribs are shown @ figure 25 for a central load. In regions
of smaller stress it is seen that the percentage variation from beam
theory becomes larger.

The spanwise variations of bending nmnent in the leading-edge spar
and central spar are shown in figure 26 for the beam of aspect ratio 2
with rectangular section. The effects of both corner loads and a central -
load are compared with beam theory for the synmetric case. The corre-
sponding antisymetric case is shown in figure 27.

BENDINGMOMENTSINFUBSDUETU BENDINGLCMDS

An illustration of chordwise bending moments in all of the ribs is
shown in figure 28 for a wing of aspect ratio 2 with rectangular section.
The effects of a central load and
metric cases.

TWISTING MOMENTS

of corner loads are conpred for sym-

DUE TO BENDING LOADS

The chordwise distributions of twisting moments in the various bays
are shown in figure 29 for the wing of aspect ratio 2 with rectangular
section. A comparison is made between the effects of a central load and
corner loads. It maybe seen that the twisting moments act in opposite
directions for the two types of loads in all bays which are outboard from
the fuselage.

DEFLEC’ITONSDUE TO TORSIONAL LOAD

In preparing the illustrations for tdrsional loading the only loading
whiclihas been considered is that of a pair of equl and opposite forces
at the corners. The chordwise distribution of deflections a’tthe tip is
shown in figure 30 for the wing of aspect ratio 2 with rectangulm section.
The symmetric and antisymmetric cases show very close Weement. The maxi-
m variation from beam theory is about 10 percent.
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The chordwise distribution of deflections for symetric loads is
shown in figure 31 for the wing of aspect ratio 2 with a biconvex section.
The curvature of the rib in this case is more noticeable than in the pre-
vious figure.

For the wing of aspect ratio 4 with biconvex section the chordwise
distributions of deflections for symmetric loading are shown in figure 32..
A coqarison with beam theory is given. The curvature of the tip rib is
noticeable.

Spanwise deflections of the leading-edge spar, and also the adjacent
spsr, are shown in figure 33 for the wing of aspect ratio 2 with a rec-
tangdar section. Symmetric sad sntisymnetric cases ere compared with
beam theory. The ssme quantities are illustrated for the biconvex sec-
tion in figure 34.

SBEARS IN SPARS DUE TO TORSIONAL LOAD

The chordwise distributions of shears in the spars sre shown in fig-
ure 35 for both wings of aspect ratio 2. Ratios of shearing stress as
computed to shearing stress from beam theory are shown. In almost all
positions of the plan form the ratio is larger t- unity. This is due
to the torsion-bending action in which normal stresses arise because of
torsional loading.

The spanwise distribtiion of shear in the spars is shown in fig-
ure 36 for the wing of aspect ratio 2 with biconvex section. Large varia-
tions from beam theory are evident.

SHEARSINKCWDUETOTORSIOIZAL LOADS

The chordwise distributions of shears in the ribs are shown in fig-
ure 37 for the two wings with rectangdar section. A comparison is shown
for the two aspect-mtio cases for symmetric loads.

BENOING MCMEN’E3IN SPARS DUE ‘IOTORSIONAL LOAD

!,

Forpurposes of illustration the bending moments in the spars have
been converted to normal stresses. The chordwise distributions of span-
wise normal stress over the support sre shown in figure 38 for the four
wings with symnetric loads. This illustration shows that the normal
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stresses due to torsion axe more than twice as large in the wings of
lower aspect ratio. Similar results are given for the antisymmetric
case in figure 39.

The variation of spanwise nornxalstress along the leading-edge spar
is shown in figure kO for the wings of aspect ratio 2. Results are shown
for both types of cross sections with symmetric and antisymmetric loading.
Corresponding stresses for the wings of aspect ratio k are shown in
figure 41.

BENDING MOMENTS IN RIBS DUE TO TORSIONAL LOADS

The bending moments in the ribs have again been converted to normal
stress. The distribution of chordwise normal stress in the various ribs
is shown in figwe 42 for the wing of aspect ratio 2 with rec~
section. Symmetric loading is considered.

TWISTING MOMENTS DUE ‘IOKNIRSIONiWllXOs

The chordwise distributions of twisting moments for various bays
are shown in figure 43 for the wings of aspect ratio 2. The quantity
which is plotted is the ratio of computed twisting moment to the value
of twisting moment given by beam theory. In most of the bays the ratio
is less than unity. This is due to the torsion-bending action of the
structur~.

EFTEET OF SHEARING STRAINS IN R12S AND SPARS

Throughout all of the analyses on the analog computer the effect of
shearing strains was taken into account. These shearing strains affect
not only the deflections but also the distribution of internal forces.
A few calculations were made on the asswtion of an infinite shearing
stiffness for the ribs and spars. The effect of shearing strains upon
the distribution of shears in the spars is shown in figure ~ for the
wing of aspect ratio 4 with rectangdar section. The change in shear
due to the existence of finite shesring strains is generally swll and
is less than 10 percent in almost all cases.

The effect of shearing straw upon the spanwise normal stress over
the support is shown in figure 45 for the wing of aspect ratio kwith
rectanguhr section. Symmetric bending and torsional loads axe considered.
The effect of shearing strains upon the normal stress distribution is scmE-
what less than the effect upon shear distribution.

—— - -—— ——
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ANALYSIS OF A GRIDWORKOF RIBSAND SPARS

In the analysis of a multicell beam the calculation work consists
of two parts. In the first psrt the normal stresses are computed from
the flexure formula and a statically determinate set of shesr flows are
computed. In the second part of the analysis the indeterminate cellular
shear flows are computed. Consideration was given to the possibility of
developing a similar method of analysis for a multicell plate. In such
a method it would be assumed that the skin is cut to prevent it from
-QZ my twisting moment. Shears and bending moments would be cal-
culated for the gridwork of ribs and spars. A mibsequent calculation
would be nmde to determine cellulsr shear flows required to restore con-
tinuity of the skin.

The above method of solution is based on the assumption that the
distribution of bend- moments in the gridwork will be approximately
the ssme as the distribution in the multicell shell. b order to check
this assumption an analysis was tie on the analog computer of the wing
of aspect ratio 2 as a gridwork. The results are conpared with the
analysis of the complete wing in figure k6 for spanwise normal stress
over the support. From this figure it can be seen that with bending
loads the distribution from gridwork theory agrees fairly well with the
correct distribution for the wing. However, under torsional loading the
discrepancy is very large. Further research study would be required to
develop this method of analysis.

KC8RATION MODES

In order to determine vibration modes and frequencies on the analog
computer it is necessary to replace the resistors by inductors. It iS
assumed that the inertia forces are provided by an equivalent set of con-
centrated masses. Each mass is represented in the analogous circuit by
a condenser which is connected to ground. An illustrationwith detailed
explanation of the vibration circuit for a beam is given in reference k.
In references 1, 2, and 4 the analogous circuits have been designed by
connecting the condensers to the cticuit at the deflection points. In
the present calculation work this technique has been modified in order to
obtati better accuracy.

It cm be shown in certain beam analyses based upon the use of dif-
ference equations that better accura~ can be obtained if the equivalent
concentrated masses are located at points midway between the deflection
points than If ’”themasses are located at the deflection points. This
improvement in accuracy can also be shown to be true for a rectangular
simply supported plate. Consequently the wing modes have been computed

—— -——-—
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by considering
midway between
the total.mass

concentrated masses to act at points on the ribs and spars
the intersection points of the ribs and spars. This divides
into approximately twice as many small concentrated masses

as would be obtained by assigning the masses to the deflection points.
This ~eater subdivision of the total mass should also tend to improve
the accuracy.

Symnetric ties for the wing of aspect ratio 2 with rectangulm crosi
section are illustrated in figure 47 by means of contour drawings. The
first bending mode in figure 47(a) shows very little camber. The tie
shape is the ssme as would be obtained from besm theory. The second
bending mode, as shown in figure 47(b), consists almost,entirely of chord-
wise bending. This camber mode cannot be predicted by beam theory.

In the bending theory of Saint Venant the chordwise caniberis obtained
by multiplying the spanwise curvature by Poisson’s ratio. If this rela-
tionship should tend to hold approximately true under various loading con-
ditions it would provide a very convenient way of determining elastic cam-
ber effects in aeroelastic analyses. A consideration of the ftrst two
bending modes as shown in figure 47 shows clearly that no relationship
between spanwise and chordwise curvatures canbe assumed to hold under
various loading conditions.

The first torsion mode is shown in figure 47(c). The frequency for
this mode lies between the two yalues for the first two bending modes.
The third bending mode is shown in figure 47(d).

The measured frequencies of the lowest males in bending and torsion
were compared, for all four Wngs, with frequencies computed from beam
theory without shearing strains. For the bending cases the variation
from beam theory was less than 1 percent. The omissionof shearing
strains in the bean analysis compensated for the Poisson ratio effect in
the wing. In the torsion cases the discrepancy was somewhat greater for
the wing of aspect ratio 2. The wing of aspect ratio 4 showed a variation
of 1 percent while the wing of aspect ratio 2 shuwed a frequency 8 percent
higher thanbeamtheory.

For the wing of aspect ratio 4 with rectangular section two symmetric
modes are shown in figure 48. The first torsion tie is shown in fig-
ure 48(a). The first three bending modes for this wing showed very little
evidence of canber. A small emount of cauiberis seen in the third bending
mode which is illustrated in figure 48(b).

The torsion mcdes can be illustrated more clesrly by drawing deflec-
tion diagrams for the various ribs and spsrs. The deflections of the
spars in the first symmetric torsion mode sre shown in figure 49 for the
wing of aspect ratio 2 with rectangdar section. The curves do not show
the curvature that would be obtained from beam theory. For the same mode

.—. - ..—.—.—-—— - - —— — —..— ——
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the deflections of the ribs sre shown in figure n. The curves show an
appreciable amount of camber which is not predicted by beam theo~.

The deflections of spars in the first symmetric torsion mode are
shown in figure 51 for the wing of aspect ratio 4 with rectangular sec-
tion. For the same mode the deflections of the ribs are illustrated
in figure 52. For the wing of aspect ratio 4 the deflections are more
nearly like those which would be obtained from beam theory.

CONCLUSIONS

In prepsring the illustrations for this paper it has only been pos-
sible to consider a very small portion of the data which were computed.-
The reader will fti that the data in the tables available on loan will
permit him to make a more thorough study of any particular case in which
he maybe interested than couldbe given in the limited space hereti
available. However, a few general statements can be made.

Under bending loads all of the wings show fairly good agreement with
beam theory. The wings of aspect ratio 2 show poorer agreement than the
wings of aspect ratio 4 but still agree, ~ g~e~l, more closelY t~ one
would be inclined to expect. The spanwise normal stresses show about the
same percentage variation from beam theory as the deflections. The shearing
stresses in the skin and spars, however, sti much poorer Weement t~
the normal stresses.

Under torsional loading the wings show poorer agreement with beam
theory than under bending loads. This is apparently due to the fact that
torsional beam theory contains no effect of warping restraint (torsion-
bending effect). The warping restraint which actually exists causes nor-
mal stresses tithe spsrs and brings about a redistribution of the tnternal
shear flows. It is clesr that there is need for a practical theory of
torsion bending for multicell beams.

For the wing of aspect ratio 2 the second symmetric bending-vibration
mode consists almost entirely of chordwise cadber. For the wing of aspect
ratio 4 the first three symmetric bending modes contained only a SM1l
amount of chordwise camber. lRromthe results of these analyses it is not
unreasonable to believe that for wings of very low aspect ratio the effects
of chordtise elastic camber should be included in aeroelastic smalyses.
In the torsional mciiesof vibration, due to the presence of warping
restraint, the deflections of the spars showed appreciably less curvature
near the tip than would be obtained from beam theory.

.-
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The data considered herein required the use of the analog computer
for 4 weeks of normal working time. Consequently it may be concluded that
the analysis of such complex structures as those herein considered is
practicable with large automatic computers.

California Institute of Technology,
Pasadena, Calif., October 20, 1952.
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(a) Material properties

Quanti_@ Value

E, psi . . . . . . . . . . . . . . . . 10.4X 106

G,psi. . . . . . . . . . . . . . . . 4.0 x 106
P ● ● ● ● * ● . ● ● ● ● ““ “ “* “ “ 0.3
Specific weight, lb/cu in. . . . . . 0.107

(b) Properties of total cross section

Rec~ section Biconvex section

Aspect ratio 2 4 2 4

%ti.4 . . . . 88.4 3% 73.4 318

4J, in..... 308 l,lg2 268 1,094

(c) Relative moments of inertia of spars

Section

~

Rec~..... 1/6 1/6 1/6 l/12
Biconvex . . . . . . 0.255 0.220 o.I28 0.0245

.,

J

. ..—— — — ——- .———.—.—
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LOADED POINTS FOR

25

2

VARIOUS CASES

Aspect ratio

I Symmetric bending

Symmetric torsion

I Antisymmetric bending

Antisymetric torsion

Rectangular Biconvex
section section

(a) (a)

2 4 2 4

A T A “T

A T A T

T T T T

T T T T

aA, all points loaded; T, tip points loaded.

-——— --——



SHEARl?LOWSINTORSIOMFROMBEA.MTHEORY

[
Biconvexsection;aspectratio, 2;

J =134.0x2= 268ti.~

4

‘~.g

4
.16”

CL(skin). . .

a (shear
webs) . . .

A. . . . . .
ZkZ . . . . .

d. . . . . .
A. . . . . .

il . . . . . .

~==””.
.Za

2Aq . . . . .

75 I 75 I 74.6 I
31.0 I 28.7 I 21.9 10.4

~.eo 42.48 26.%
209.7 200.6 181.5

0.1478)
50.8
7.5
2.0
0.5
0.1

69.0
10.2

69.0

(0.I.369)(0.I-431)
42.5

6.1 7.0
1.5 1.9
0.4 0.5
0.1 0.1

$.0
8.0 9.4

56.0

0.658

66.9

(0.1092)(0.I.207)
27.0
4.6

;:2 1.1
0.1 0.3
0 0.1

4.1

33.1

0.558

47.4

I

0.365

19.7
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wk

27

Ij . . . . .

( J)sv“”””

h~. . . . .

(J)q* . . . .

d. . . . . .
d (qj)~ . ● .

q~.....

( mq= . . .
qj . . . . .

Vj . . . . .

SHEARFLOWSDUE TO VIIWI’ICALSHEARFROM BEAM THEORY

[
Biconvex section; aapect ratio, 2; total

section shear, 2 13

18.84

0.512

4.34
0.M30

16.20

0.440

4.02
0.1093

9.40
0.255

3.06

o.o@4

(o;l:~w~ (0.1369) (061:;~ (0.mw) (0.1207)
. -0.0150 . -0.0091 0.0101

(O;l:W’8; (0.1431) (0.1369)
. 0.0065

-0.0004 0.0009 0.0003
-0.0001 0.0002 0.0001

(o.1207) (0.1092)
0.0082

0.0009 0.0008
0.0001 0.CQOl

o.W30 o.Oo-p 0.0091
-0.0004 0.0011 0.0004 0.0010 0.OQlo

0.0031 0. (X)79 o.oog2

-0.0062 -0.0048 -0.0013

o.m8 0.1045 0.0821

0.485 0.420 0.251

1.7g

0.049
1.46

0.0336

(0.0573)
-0.0019

0.0092

0.0428

0.062

. . . . . .—— —.— .——_.._ _ —.— .— —— ..— — __ —_______ .
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(a) Plan form. ,

(b) Section A-A.

o./#f4m h=. l@- 0.07 “
~ a/4)’

(c) Section B-B.

Figure l.- Wing with rectangular cross section. Aspect ratio, 2.
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SF

form.

(b) .SectionA-A.

0./4” .

“*’’”&QO,”
I

(c) Section B-B.

Figure 2.- Wing with rectangular cross section. Aspect ratio, 4.
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72”*

(b) View A-A.

(c) Section B-B.

Figure 3.- Wing with biconvex cross section. ASpect ratio, 2.

—
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I QI I

(a) Plan

‘S lnmetrjcal
L?L Uf $

form.

-+

0./44 -.

(b) View A-A.

-0.14 ‘1
+0./4”

/!
.

*-

F=5
I

36” 9

46 q

0.35”

(c) Section B-B.

Figure 4.- W@ tith biconvex cross section. Aspect ratio, 4.
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I

I (
Leading ed’e of wing

.
Midchord of wing

I

Figure 5.- Numbering of points at which quantities are measured.



NACATN 31.13 33

v L}ne of Suppopt
(/%ce of fuseluge )

I

Leatiog +e of wing

1

I

\
M/dchord of wing

I

Figure 6.- Points at which concentrated loads are applied and deflections
and bending moments are measured.
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Figure 7.- Points at which spanwise and chordtise shears are determined.
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Figure 8.- Points at which -sting moments are determined.
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Figure 9.- Circuit for Eheara and deflections.
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w*
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/ 3 7 9

(a) Loaded beam.

/,03
1

/ t
/,02

4
/

/
1*OI

/
/

/.00
/ 3 7

(b) Relative deflections from difference eqpations.

A.R.=2

A.R*”4

/ 3 5 7 9

(c) Deflections due to shear for reckmgular cross section.

Figure U?.- Deflections from beam theory for symmetrical loads.
“
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/./5

/./0
E*
w /.05

/.00

I

(a) Loaded beam.

3 5 7

(b) Relative deflections from difference equations.

I 1“ I
I I

.30 ‘ I I \ I I

I \lII
.20 I

)

./o-— — 1)

3

(c) Deflections due

Figure 13.-

5 7 9

to shear for rectangular cross section.

A.R=2

A.R, = 4

from beam theory for antisymmetrical.loads.
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1 I
I

A +

L- B
I \

A Upwud
load

(a) Bending load. Bending moment on section A-A is 2PL. Shear on
section B-B is 2P.

(b) Torsional load. Torque on section C-C is Pc.
%ear on section D-D is.P.

Figure lk.- Control sections for correcting electrical quantities to
satisfy statics.
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. (a) Loading points. P .1 Mp.
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(c) Deflections.

Figure 15.- Chor@ise deflections at tip. Aspect ratio, 2.
_tric bending.
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(a) Loading point. P = 2 kips.

(b) Half cross section.
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(a) Loading point.
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(b) Relative values of deflections.

Figure 17.- Chordwise deflections at ribs. Biconvex
_tric bending.
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(a) Loading point. P = 2 kips.

Figure 18.-
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(a) Loading point.
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Relative values of stress.

Figure 19.- Chordwise distribution of shears in spars. Symmetric bending.

Rec~ section.
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(a) Loading points.
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3 5 7
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loud, /oc7d &y 6

1

1
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(b) Relative till,, Of stress.

.

4%2)/8

Figure 20.- Chordwise distribution of shears in spars. Aspect ratio, 2.
Symmetric bending. Biconvex section.
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(a) Loading points. P = 1 pound.
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Figure 21.- Spanwise
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(c) Antisymetric loads.

distribution of shears in spars. Aspect ratio, 2.
Rectangular section.
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Figure 22.- Chordwise distribution of shears in ribs.
Symmetric bending.
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Figure 23.- Spanwise normal
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(b) Aspect ratio, 2.

Figure 24.-

3 5

(c) Aspect ratio, 4.
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(b) Relative values of stress.

Figure 25.- Spanwise normal stress at various ribs. Aspect ratio, 2.
Symmetric bending.
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